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The electron momentum distribution in scandium metal 
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Abstract. Using wavefunctions f" energy band calculations he Compton profiles of 
the electron momentum distribution in scandium metal have teen calculated along th6 
crystallographic directions (loo), (I IO) and (1 1 I). The resuIIs shuw a considerable amount 
of anisormpy in the Complon profiles. 

1. Introduction 

Measurements of the Compton profiles of the electron momentum distribution in scandium 
metal are available from techniques using both x-rays (Manninen 1971, Weiss 1972) and y-  
rays (Paakkari er a1 1976). These profiles are, however, isotropic in nature and, as such, fail 
to show the dependence of the shape of the profiles on crystallographic directions. On the 
theoretical side, attempts have been made to interpret these data on the basis of a free-atom 
model as well as the renormalized-free-atom (RFA) model (F'aakkari er al 1976). While the 
latter model may be a better approximation than the free-atom model, it cannot describe 
satisfactorily the elecron states, and particularly the band states in a solid. To our knowledge, 
calculations of the Compton profiles for scandium metal using band wavefunctions and for 
different crystallographic directions are not available. To bridge this gap we have made 
an attempt to determine the shape dependence of the Compton profiles on crystallographic 
directions. For this purpose, energy eigenfunctions of scandium metal have been calculated 
using a non-local model potential. The paper is organized as follows. In section 2, we briefly 
describe the procedure for the calculation of the Compton profiles. Section 3 summarizes 
the results of the present calculation. Conclusions are given in section 4. 

2. Procedure 

In the impulse approximation (Platzman and Tzoar 1965) the cross section for the scattering 
of a photon by an electron in a fixed direction k is given (Rath et a1 1973) by 

where Q is the volume of the unit cell, p is the initial momentum of an electron and p is 
the momentum distribution function. 

In the present work, each of the Is-3p core electrons in scandium metal is represented 
by a single tight-binding function 

0953-8984D3/458557t06$07.50 0 1993 IOP Publishing Lid 8551 



8558 B B Panigrahi and N C Mohapatra 

Figure 1. Jk!q) for scan- 
dium wilh k along lhe 
(100) d i d o n :  curve A, 
band contribution; curve 
B, total contribution (core 0 2 L -  6 

q inul t band). 

where N is the number of unit cells, g is a wavevector in the Brillouin zone (Bz), RF 
is the lattice vector in the direct lattice and U; is the ith atomic core function. The 
conduction elecbon states, on the other hand, are constructed by orthogonalizing the model 
wavefunction, determined in the model potential calculation, to the core states. The model 
wavefunctions expanded in the plane-wave basis set are determined in the standard band 
calculation procedure (Mahapatra et a1 1977) employing a model potential or pseudo- 
potentials. Thus a band state in this procedure is expressed as 

where f denotes the band index, the Ct are the coefficients determined in the variational 
procedure and PW is the plane wave given by 

P W ( ~ , T )  = (1/V'7Z)exp(ik-r). (4) 

The momentum distribution function is given by 

where 

w 3 . P )  = - V'7Z exp(-ip. T) @,@, T) d3r. (6) 

A similar integral holds for &@, p ) .  The summation in equation (5) is taken over all the 
occupied band states (first term) and the core states (second term). Using p @ )  for the core 
State in equation (1) it can be easily shown (Berggren 1972) that the contribution per atom 
from core electron is given by 

' I  

where n ,  I are the quantum numbers of the core states and In] is the integral given by 
m 

~ p )  = 1 ji(pr)P.t(r)rdr (8) 

involving the mdiai part of the atomic core function P,,! and the spherical Bessel function 
j l  of order 1. 
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Figure 2. Jk(q )  for scan- 
dium with along the 
(110) direction: curve A, 
band conhibution; curve 

n i I .  A B, total conhibution (core 
+band). q IOU1 

Table 1. Present results of the Compton profiles JkCq) of scandium along the (100) direction. 

9 Core conhibution Band elecmns Total 
(au) (au) (au) (U) 

0.0 3.590 0.999 4.589 
0.1 3.584 3.094 6.618 
0.2 3.562 2.410 5.972 
0.3 3.518 1.974 5.492 
0.4 3.450 2055 5.505 
0.5 3.359 1.515 4.874 
0.6 3.245 1.263 4.508 
0.7 3.111 0.776 3.887 
0.8 2.959 0.152 3.111 
0.9 2.795 0.092 2.887 
1.0 2.623 0.056 2679 
1.2 2.270 0.lO 2370 
1.4 1.936 0.091 2.027 
1.6 1.643 0.049 1.692 
1.8 1.397 0.009 1.406 
2.0 1.203 0.008 1.208 
2.2 1.046 0.01 1 1.057 
2.4 0.924 0.010 0.934 
2.6 0.834 
2.8 0.756 

0.008 0.842 
0.001 0.757 

3.0 0.698 0.000 0.698 
3.5 0.583 0.001 0.584 
4.0 0.497 0.N 0.497 
4.5 0.421 0.000 0.421 
5.0 0.355 0.000 0.355 
6.0 0.229 0.000 0.229 
1.0 0.206 0.000 0.206 

In order to obtain the band contribution to J i ( q ) ,  the band part of p(p) from the 
equation (5) is used in equation ( I )  and the summation with respect to gvectors over the 
Bz is replaced by a combination of the weighted sum over a number of sample g-vectors 
chosen in the irreducible part and a symmetry sum over the point group of the crystalline 
lattice. In this respect the procedure is similar to that of Rath et al (1973). Replacing the 
D i m  &function in equation (1) by the derivative of the step function 8, the contribution to 
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J&) (per atom) from the band states can be expressed as 

B B Panigrahi and N C Mohapatra 

J&) = dFi(q)/dq 
where 

x c(2l + Mi(Ig + KI)lttr(lg + ~ ~ t ) f i ( c o ~ ~ K K , )  (10) 

where wg is the weighting factor associated with the g-vector in the irreducible part of the 
Bz, f i  is the Legendre polynomial of order I ,  BKK, is the angle between the vectors g + K 
and g+ K', 01 is the point-symmeby operator and S(K) is the structure factor of the lattice. 
In equation (IO) the first three lines arise from the plane wave and the hybrid part (i.e. the 
plane-wavetight-binding combination) and the last three lines give the contribution from 
the tight-binding part of the band state Ql. It may be noted that, when the core states are 
completely filled, the contribution to J k ( q )  from these states is found to be isotropic. 

nl 

Figure 3. Jk(q )  for scan- 
dium with k along the 
(1 1 1 )  direction: c w e  A. 
band contribution: curve 

0 2 L 6 B total contribution (core 
k7 (O"1 t band). 

The results for J i ( q )  obtained for any arbitrary direction k satisfy math et al 1973) 

where n is equal to half the number of electrons per atom. Equation (11) may be used as 
a test for the accuracy of the band as well as the core contribution to Jb(q) .  
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Table 2. Presenl rerults of the Compmn profiles JiJq) of scandium along the (110) direction. 

q Bandelectrons Total q Bandelectrons Total 
(=U) (a") (4 (au) (a") (au) 

0.0 2.783 6.373 1.8 0.022 1.419 
0.1 1.938 5.523 2.0 0.012 1.212 
0.2 2.471 6.033 2.2 0.011 1.057 
0.3 2.297 5.815 2.4 0.007 0.931 
0.4 1.618 5.069 2.6 0.006 0.840 
0.5 1.924 5.283 2.8 0.003 0.760 
0.6 1.618 4.863 3.0 0.001 0.699 
0.7 0.645 3.757 3.5 0.001 0.583 
0.8 0.237 3.196 4.0 0.W 0.497 
0.9 0.080 2.875 4.5 0 .W 0.421 
1.0 0.090 2.713 5.0 0 . W  0.355 
1.2 0.065 2335 6.0 0.000 0.229 
1.4 0.085 2.021 7.0 0.000 0.206 
1.6 0.048 1.690 

Table 3. Resent resultr of the Compton profiles J i (q )  of scandium along lhe (111) direction. 

q Bandelecbons TOM q Band electrons TOM 
(au) (au) (au) (au) (au) (an) 
0.0 2.326 5.916 1.8 0.027 1 A24 
0.1 2.433 6.017 2 0  0.015 1216 
0.2 2.296 5.858 2.2 0.009 1.055 
0.3 2.074 5.592 24 0.006 0.930 
0.4 1.941 5.392 2.6 0.004 0.838 
0.5 1.732 5.091 2.8 0.002 0.758 
0.6 1.306 4.551 3.0 0.W1 0.699 
0.7 0.793 3.905 3.5 0.000 0.583 
0.8 0.303 3.263 4.0 0.000 0.497 
0.9 0.092 2.887 4.5 0.000 0.421 
1.0 0.091 2.713 5.0 0.000 0.355 
1.2 0.072 2.342 6.0 0.000 0.229 
1.4 0.058 1.994 7.0 0.000 0.206 
1.6 0.043 1.686 

3. Results +nd discussions 

Scandium metal has a hexagonal closepacked lattice structure. The lattice parameters 
a = 6.2391 au and c = 9.9316 au used in the present work are those given by Das (1976). 
In canying out the energy band calculations, the non-local model potential parameters given 
by Animalu (1973) have been used. The model potential is first screened by a suitable 
dielectric function (Animalu 1973) before being used in the evaluation of the Hamiltonian 
matrix elements. The energy and band wavefunctions are calculated at 3456 representative 
g-points chosen throughout the BZ. For this purpose, in the one-twentyfourth irreducible part 
of the Bz, 144 g-points distributed suitably over nine equidistant planes sliced perpendicular 
to c axis are chosen. To each of the gpoints a weighting factor wg in proportion to the 
volume that it represents is assigned. At each g-point the model wavefunction is expanded 
in 23 plane waves corresponding to the shortest 23 wavevectors 1g + KI for that g-point. 
With this choice the convergence of energy and eigenfunctions is found to be good. The 
bands have converged to within 0.001 Ryd. 
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In an evaluation of the core contribution to J ( 9 ) .  the atomic wavefunctions of Clementi 
(1967) have been used. As the core states are localized, the corresponding momentum 
distribution is delocalized and this requires J ( 9 )  to be integrated over a very large distance 
on the q scale in order to satisfy equation ( 1  1). This is particularly m e  for Is states whose 
contribution to J ( 9 )  vanes very slowly with 9. Since the impulse approximation is not 
good for Is electrons, one may ignore them. By ignoring 1s electrons, we find that the 
integrated result from equation (1 1) is 7.56 which is close to 8, the number of core electrons 
in half an atom. There still remains some contributions from 2s and 2p electrons which 
accounts for the above discrepancy. 

Unlike the core states, the band states are delocalized, and hence their momentum 
distribution is fairly localized. To evaluate the band contribution to Jk(9) ,  equations (9) 
and (IO) are used. It may be noted that the plane-wave and hybrid (the first three lines 
in equation (IO)) contributions were found to be well converged with 23 reciprocal-lattice 
vectors. However, to obtain convergence of the tight-binding contribution we have summed 
over the lowest 297 K,-vectors. This number of K,-vectors was also used for the three 
crystallographic directions (LOO), (1  10) and (1 11). In each case, equation (1 1) gives the 
number of conduction electrons per half-atom as approximately equal to 1.48. The latter 
value is very close to the exact result of 1.5 in scandium. 

In tables 1-3, the results for Jk(9)  are listed for the three crystallographic directions. In 
addition, these results are also plotted in figures 1-3. In table 1, the core contribution, the 
band contribution and the total J&) are given. As the core contribution in the present work 
is the same for all the directions, it is not listed in tables 2 and 3 with a view to avoiding 
repetition. It may be noted from the tables as well as the figures that the anisotropy of the 
Compton profiles is quite appreciable. Considerable structures in the band contributions are 
seen from the figure. Similar but less prominent structures were also noted in the work of 
Rath et af  (1973). Experimental data for the crystallographic directions are not available to 
compare with the present results. 

4. Conclusions 

Using the wavefunctions from energy band calculations, the Compton profiles of the electron 
momentum distribution are calculated along the (100). (I 10) and (1 1 I )  directions. The 
results show a considerable amount of anisotropy in the profiles. It would be interesting to 
have measurements to compare with the theoretical predictions. 
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